"Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t′"

Hong-Chen Jiang: Thomas P. Devereaux; Science, 09/27/19.

Additional Authors: Thomas P. Devereaux

Abstract:

The Hubbard model is widely believed to contain the essential ingredients of high-temperature superconductivity. However, proving definitively that the model supports superconductivity is challenging. Here, we report a large-scale density matrix renormalization group study of the lightly doped Hubbard model on four-leg cylinders at hole doping concentration δ=12.5%. We reveal a delicate interplay between superconductivity and charge density wave and spin density wave orders tunable via next-nearest neighbor hopping t′. For finite t′, the ground state is consistent with a Luther-Emery liquid with power-law superconducting and charge density wave correlations associated with half-filled charge stripes. In contrast, for t′ = 0, superconducting correlations fall off exponentially, whereas charge density and spin density modulations are dominant. Our results indicate that a route to robust long-range superconductivity involves destabilizing insulating charge stripes in the doped Hubbard model.