"Orbital and spin moments of 5 to 11 nm Fe3O4 nanoparticles measured via x-ray magnetic circular dichroism"

Y. P. Cai: K. Chesnel, M. Trevino, A. Westover, R. G. Harrison, J. M. Hancock, S. Turley, A. Scherz, A. Reid, B. Wu, C. Graves, T. Wang, T. Liu and H. Dürr; J. Appl. Phys., 05/07/14.

Additional Authors: K. Chesnel, M. Trevino, A. Westover, R. G. Harrison, J. M. Hancock, S. Turley, A. Scherz, A. Reid, B. Wu, C. Graves, T. Wang, T. Liu and H. Dürr

Abstract:

The orbital and spin contributions to the magnetic moment of Fe in FeO nanoparticles were measured using X-ray magnetic circular dichroism (XMCD). Nanoparticles of different sizes, ranging from 5 to 11 nm, were fabricated via organic methods and their magnetic behavior was characterized by vibrating sample magnetometry (VSM). An XMCD signal was measured for three different samples at 300 K and 80 K. The extracted values for the orbital and spin contributions to the magnetic moment showed a quenching of the orbital moment and a large spin moment. The calculated spin moments appear somewhat reduced compared to the value expected for bulk FeO. The spin moments measured at 80 K are larger than at 300 K for all the samples, revealing significant thermal fluctuations effects in the nanoparticle assemblies. The measured spin moment is reduced for the smallest nanoparticles, suggesting that the magnetic properties of FeO nanoparticles could be altered when their size reaches a few nanometers.