"Transparent and conductive paper from nanocellulose fibers"

Liangbing Hu: Guangyuan Zheng, Jie Yao, Nian Liu, Ben Weil, Martin Eskilsson, Erdem Karabulut, Zhichao Ruan, Shanhui Fan, Jason T. Bloking, Michael D. McGehee, Lars Wågberg and Yi Cui; Energy and Environmental Science, 11/19/12.

Additional Authors: Guangyuan Zheng, Jie Yao, Nian Liu, Ben Weil, Martin Eskilsson, Erdem Karabulut, Zhichao Ruan, Shanhui Fan, Jason T. Bloking, Michael D. McGehee, Lars Wågberg and Yi Cui

Abstract:

Here we report on a novel substrate, nanopaper, made of cellulose nanofibrils, an earth abundant material. Compared with regular paper substrates, nanopaper shows superior optical properties. We have carried out the first study on the optical properties of nanopaper substrates. Since the size of the nanofibrils is much less than the wavelength of visible light, nanopaper is highly transparent with large light scattering in the forward direction. Successful depositions of transparent and conductive materials including tin-doped indium oxide, carbon nanotubes and silver nanowires have been achieved on nanopaper substrates, opening up a wide range of applications in optoelectronics such as displays, touch screens and interactive paper. We have also successfully demonstrated an organic solar cell on the novel substrate.