SIMES Publications
Enter search terms and sorting preferences below:
"Emergence of spin singlets with inhomogeneous gaps in the kagome lattice Heisenberg antiferromagnets Zn-barlowite and herbertsmithite" — Jiaming Wang: Weishi Yuan, Philip M. Singer, Rebecca W. Smaha, Wei He, Jiajia Wen, Young S. Lee & Takashi Imai; Nature Physics, 08/05/21.
Show Abstract » | Show Additional Authors »
Additional Authors
Weishi Yuan, Philip M. Singer, Rebecca W. Smaha, Wei He, Jiajia Wen, Young S. Lee & Takashi Imai
Abstract
The kagome Heisenberg antiferromagnet formed by frustrated spins arranged in a lattice of corner-sharing triangles is a prime candidate for hosting a quantum spin liquid (QSL) ground state consisting of entangled spin singlets1. However, the existence of various competing states makes a convincing theoretical prediction of the QSL ground state difficult2, calling for experimental clues from model materials. The kagome lattice materials Zn-barlowite (ZnCu3(OD)6FBr)3,4,5 and herbertsmithite (ZnCu3(OD)6Cl2)6,7,8,9,10 do not exhibit long-range order and are considered the best realizations of the kagome Heisenberg antiferromagnet known so far. Here we use 63Cu nuclear quadrupole resonance combined with the inverse Laplace transform11,12,13 to locally probe the inhomogeneity of delicate quantum ground states affected by disorder14,15,16,17. We present direct evidence for the gradual emergence of spin singlets with spatially varying excitation gaps, but even at temperatures far below the super-exchange energy scale their fraction is limited to ~60% of the total spins. Theoretical models18,19 need to incorporate the role of disorder to account for the observed inhomogeneously gapped behaviour.
"Electrochemical ion insertion from the atomic to the device scale" — Aditya Sood: Andrey D. Poletayev, Daniel A. Cogswell, Peter M. Csernica, J. Tyler Mefford, Dimitrios Fraggedakis, Michael F. Toney, Aaron M. Lindenberg, Martin Z. Bazant, and William C. Chueh; Nature Reviews Materials, 05/24/21.
Show Abstract » | Show Additional Authors »
Additional Authors
Andrey D. Poletayev, Daniel A. Cogswell, Peter M. Csernica, J. Tyler Mefford, Dimitrios Fraggedakis, Michael F. Toney, Aaron M. Lindenberg, Martin Z. Bazant, and William C. Chueh
Abstract
Electrochemical ion insertion involves coupled ion–electron transfer reactions, transport of guest species and redox of the host. The hosts are typically anisotropic solids with 2D conduction planes but can also be materials with 1D or isotropic transport pathways. These insertion compounds have traditionally been studied in the context of energy storage but also find extensive applications in electrocatalysis, optoelectronics and computing. Recent developments in operando, ultrafast and high-resolution characterization methods, as well as accurate theoretical simulation methods, have led to a renaissance in the understanding of ion-insertion compounds. In this Review, we present a unified framework for understanding insertion compounds across timescales and length scales ranging from atomic to device levels. Using graphite, transition metal dichalcogenides, layered oxides, oxyhydroxides and olivines as examples, we explore commonalities in these materials in terms of point defects, interfacial reactions and phase transformations. We illustrate similarities in the operating principles of various ion-insertion devices, ranging from batteries and electrocatalysts to electrochromics and thermal transistors, with the goal of unifying research across disciplinary boundaries.
"Dynamical signatures of symmetry protected topology following symmetry breaking" — Jacob A. Marks: Michael Schüler, and Thomas P. Devereaux; Physical Review Research, 05/21/21.
Show Abstract » | Show Additional Authors »
Additional Authors
Michael Schüler, and Thomas P. Devereaux
Abstract
We investigate topological signatures in the short-time nonequilibrium dynamics of symmetry protected topological (SPT) systems starting from initial states which break a protecting symmetry. Naively one might expect that topology loses meaning when a protecting symmetry is broken. Defying this intuition, we illustrate, in an interacting Su-Schrieffer-Heeger (SSH) model, how this combination of symmetry breaking and quench dynamics can give rise to both single-particle and many-body signatures of topology. From the dynamics of the symmetry broken state, we find that we are able to dynamically probe the equilibrium topological phase diagram of a symmetry respecting projection of the post-quench Hamiltonian. In the ensemble dynamics we demonstrate how spontaneous symmetry breaking (SSB) of a protecting symmetry can result in a quantized many-body topological “invariant” which is not pinned under unitary time evolution. We dub this “dynamical many-body topology” (DMBT). We show numerically that both the pure state and ensemble signatures are remarkably robust, and argue that these nonequilibrium signatures should be quite generic in SPT systems, regardless of protecting symmetries or spatial dimension.
"Alloying a single and a double perovskite: a Cu+/2+ mixed-valence layered halide perovskite with strong optical absorption" — Bridget A. Connor: Rebecca W. Smaha, Jiayi Li, Aryeh Gold-Parker, Alexander J. Heyer, Michael F. Toney, Young S. Lee and Hemamala I. Karunadasa; Chemical Science, 05/14/21.
Show Abstract » | Show Additional Authors »
Additional Authors
Rebecca W. Smaha, Jiayi Li, Aryeh Gold-Parker, Alexander J. Heyer, Michael F. Toney, Young S. Lee and Hemamala I. Karunadasa
Abstract
Introducing heterovalent cations at the octahedral sites of halide perovskites can substantially change their optoelectronic properties. Yet, in most cases, only small amounts of such metals can be incorporated as impurities into the three-dimensional lattice. Here, we exploit the greater structural flexibility of the two-dimensional (2D) perovskite framework to place three distinct stoichiometric cations in the octahedral sites. The new layered perovskites AI4[CuII(CuIInIII)0.5Cl8] (1, A = organic cation) may be derived from a CuI–InIII double perovskite by replacing half of the octahedral metal sites with Cu2+. Electron paramagnetic resonance and X-ray absorption spectroscopy confirm the presence of Cu2+ in 1. Crystallographic studies demonstrate that 1 represents an averaging of the CuI–InIII double perovskite and CuII single perovskite structures. However, whereas the highly insulating CuI–InIII and CuII perovskites are colorless and yellow, respectively, 1 is black, with substantially higher electronic conductivity than that of either endmember. We trace these emergent properties in 1 to intervalence charge transfer between the mixed-valence Cu centers. We further propose a tiling model to describe how the Cu+, Cu2+, and In3+ coordination spheres can pack most favorably into a 2D perovskite lattice, which explains the unusual 1 : 2 : 1 ratio of these cations found in 1. Magnetic susceptibility data of 1 further corroborate this packing model. The emergence of enhanced visible light absorption and electronic conductivity in 1 demonstrates the importance of devising strategies for increasing the compositional complexity of halide perovskites.
"Alloying a single and a double perovskite: a Cu+/2+ mixed-valence layered halide perovskite with strong optical absorption" — Bridget A. Connor,: Rebecca W. Smaha, Jiayi Li, Aryeh Gold-Parker, Alexander J. Heyer, Michael F. Toney, Young S. Lee and Hemamala I. Karunadasa; Chemical Science, 05/14/21.
Show Abstract » | Show Additional Authors »
Additional Authors
Rebecca W. Smaha, Jiayi Li, Aryeh Gold-Parker, Alexander J. Heyer, Michael F. Toney, Young S. Lee and Hemamala I. Karunadasa
Abstract
Introducing heterovalent cations at the octahedral sites of halide perovskites can substantially change their optoelectronic properties. Yet, in most cases, only small amounts of such metals can be incorporated as impurities into the three-dimensional lattice. Here, we exploit the greater structural flexibility of the two-dimensional (2D) perovskite framework to place three distinct stoichiometric cations in the octahedral sites. The new layered perovskites AI4[CuII(CuIInIII)0.5Cl8] (1, A = organic cation) may be derived from a CuI–InIII double perovskite by replacing half of the octahedral metal sites with Cu2+. Electron paramagnetic resonance and X-ray absorption spectroscopy confirm the presence of Cu2+ in 1. Crystallographic studies demonstrate that 1 represents an averaging of the CuI–InIII double perovskite and CuII single perovskite structures. However, whereas the highly insulating CuI–InIII and CuII perovskites are colorless and yellow, respectively, 1 is black, with substantially higher electronic conductivity than that of either endmember. We trace these emergent properties in 1 to intervalence charge transfer between the mixed-valence Cu centers. We further propose a tiling model to describe how the Cu+, Cu2+, and In3+ coordination spheres can pack most favorably into a 2D perovskite lattice, which explains the unusual 1 : 2 : 1 ratio of these cations found in 1. Magnetic susceptibility data of 1 further corroborate this packing model. The emergence of enhanced visible light absorption and electronic conductivity in 1 demonstrates the importance of devising strategies for increasing the compositional complexity of halide perovskites.
"Gold-Cage Perovskites: A Three-Dimensional AuIII–X Framework Encasing Isolated MX63– Octahedra (MIII = In, Sb, Bi; X = Cl–, Br–, I–)" — Kurt P. Lindquist: Michael A. Boles, Stephanie A. Mack, Jeffrey B. Neaton, and Hemamala I. Karunadasa; Journal of the American Chemical Society, 05/04/21.
Show Abstract » | Show Additional Authors »
Additional Authors
Michael A. Boles, Stephanie A. Mack, Jeffrey B. Neaton, and Hemamala I. Karunadasa
Abstract
The Cs8AuIII4MIIIX23 (M = In3+, Sb3+, Bi3+; X = Cl–, Br–, I–) perovskites are composed of corner-sharing Au–X octahedra that trace the edges of a cube containing an isolated M–X octahedron at its body center. This structure, unique within the halide perovskite family, may be derived from the doubled cubic perovskite unit cell by removing the metals at the cube faces. To our knowledge, these are the only halide perovskites where the octahedral sites do not bear an average 2+ charge. Charge compensation in these materials requires a stoichiometric halide vacancy, which is disordered around the Au atom at the unit-cell corner and orders when the crystallization is slowed. Using X-ray crystallography, X-ray absorption spectroscopy, and pair distribution function analysis, we elucidate the structure of this unusual perovskite. Metal-site alloying produces further intricacies in this structure, which our model explains. Compared to other halide perovskites, this class of materials shows unusually low absorption onset energies ranging between ca. 1.0 and 2.4 eV. Partial reduction of Au3+ to Au+ affords an intervalence charge-transfer band, which redshifts the absorption onset of Cs8Au4InCl23 from 2.4 to 1.5 eV. With connected Au–X octahedra and isolated M–X octahedra, this structure type combines zero- and three-dimensional metal-halide sublattices in a single material and stands out among halide perovskites for its ordering of homovalent metals, ordering of halide vacancies, and incorporation of purely trivalent metals at the octahedral sites.

"A snapshot review—Fluctuations in quantum materials: from skyrmions to superconductivity" — L. Shen: M. Seaberg, E. Blackburn & J. J. Turner; MRS Advances, 04/14/21.
Show Abstract » | Show Additional Authors »
Additional Authors
M. Seaberg, E. Blackburn & J. J. Turner
Abstract
By measuring a linear response function directly, such as the dynamic susceptibility, one can understand fundamental material properties. However, a fresh perspective can be offered by studying fluctuations. This can be related back to the dynamic susceptibility through the fluctuation–dissipation theorem, which relates the fluctuations in a system to its response, an alternate route to access the physics of a material. Here, we describe a new X-ray tool for material characterization that will offer an opportunity to uncover new physics in quantum materials using this theorem. We provide details of the method and discuss the requisite analysis techniques in order to capitalize on the potential to explore an uncharted region of phase space. This is followed by recent results on a topological chiral magnet, together with a discussion of current work in progress. We provide a perspective on future measurements planned for work in unconventional superconductivity.
"Subterahertz collective dynamics of polar vortices" — Qian Li: Vladimir A. Stoica, Marek Paściak, Yi Zhu, Yakun Yuan, Tiannan Yang, Margaret R. McCarter, Sujit Das, Ajay K. Yadav, Suji Park, Cheng Dai, Hyeon Jun Lee, Youngjun Ahn, Samuel D. Marks, Shukai Yu, Christelle Kadlec, Takahiro Sato, Matthias C. Hoffmann, Matthieu Chollet, Michael E. Kozina, Silke Nelson, Diling Zhu, Donald A. Walko, Aaron M. Lindenberg, Paul G. Evans, Long-Qing Chen, Ramamoorthy Ramesh, Lane W. Martin, Venkatraman Gopalan, John W. Freeland, Jirka Hlinka & Haidan Wen; Nature, 04/14/21.
Show Abstract » | Show Additional Authors »
Additional Authors
Vladimir A. Stoica, Marek Paściak, Yi Zhu, Yakun Yuan, Tiannan Yang, Margaret R. McCarter, Sujit Das, Ajay K. Yadav, Suji Park, Cheng Dai, Hyeon Jun Lee, Youngjun Ahn, Samuel D. Marks, Shukai Yu, Christelle Kadlec, Takahiro Sato, Matthias C. Hoffmann, Matthieu Chollet, Michael E. Kozina, Silke Nelson, Diling Zhu, Donald A. Walko, Aaron M. Lindenberg, Paul G. Evans, Long-Qing Chen, Ramamoorthy Ramesh, Lane W. Martin, Venkatraman Gopalan, John W. Freeland, Jirka Hlinka & Haidan Wen
Abstract
The collective dynamics of topological structures1,2,3,4,5,6 are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions3,4 have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage7. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices5,6, and these are promising for ultrafast electric-field control of topological orders. However, little is known about the dynamics underlying the functionality of such complex extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements, we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices3. A previously unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is considerably reduced (softened) at a critical strain, indicating a condensation (freezing) of structural dynamics. We use first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures with ultrahigh speed and density.
"Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals" — Burak Guzelturk: Benjamin L. Cotts, Dipti Jasrasaria, John P. Philbin, David A. Hanifi, Brent A. Koscher, Arunima D. Balan, Ethan Curling, Marc Zajac, Suji Park, Nuri Yazdani, Clara Nyby, Vladislav Kamysbayev, Stefan Fischer, Zach Nett, Xiaozhe Shen, Michael E. Kozina, Ming-Fu Lin, Alexander H. Reid, Stephen P. Weathersby, Richard D. Schaller, Vanessa Wood, Xijie Wang, Jennifer A. Dionne, Dmitri V. Talapin, A. Paul Alivisatos, Alberto Salleo, Eran Rabani & Aaron M. Lindenberg; Nature Communications, 03/25/21.
Show Abstract » | Show Additional Authors »
Additional Authors
Benjamin L. Cotts, Dipti Jasrasaria, John P. Philbin, David A. Hanifi, Brent A. Koscher, Arunima D. Balan, Ethan Curling, Marc Zajac, Suji Park, Nuri Yazdani, Clara Nyby, Vladislav Kamysbayev, Stefan Fischer, Zach Nett, Xiaozhe Shen, Michael E. Kozina, Ming-Fu Lin, Alexander H. Reid, Stephen P. Weathersby, Richard D. Schaller, Vanessa Wood, Xijie Wang, Jennifer A. Dionne, Dmitri V. Talapin, A. Paul Alivisatos, Alberto Salleo, Eran Rabani & Aaron M. Lindenberg
Abstract
Nonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in nanocrystals are not understood. Here, femtosecond electron diffraction measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in semiconductor nanocrystals. Investigation of the excitation energy dependence shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap result in transient lattice heating that occurs on a much longer 200 ps timescale, governed by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices.
"Electronic Structure Trends Across the Rare-Earth Series in Superconducting Infinite-Layer Nickelates" — Emily Been: Wei-Sheng Lee, Harold Y. Hwang, Yi Cui, Jan Zaanen, Thomas Devereaux, Brian Moritz, and Chunjing Jia; Physical Review X, 03/12/21.
Show Abstract » | Show Additional Authors »
Additional Authors
Wei-Sheng Lee, Harold Y. Hwang, Yi Cui, Jan Zaanen, Thomas Devereaux, Brian Moritz, and Chunjing Jia
Abstract
The recent discovery of superconductivity in oxygen-reduced monovalent nickelates has raised a new platform for the study of unconventional superconductivity, with similarities to and differences from the cuprate high-temperature superconductors. In this paper, we investigate the family of infinite-layer nickelates RNiO2 with rare-earth R spanning across the lanthanide series, introducing a new and nontrivial “knob” with which to tune nickelate superconductivity. When traversing from La to Lu, the out-of-plane lattice constant decreases dramatically with an accompanying increase of Ni d x2−y2 bandwidth; however, surprisingly, the role of oxygen charge transfer diminishes. In contrast, the magnetic exchange grows across the lanthanides, which may be favorable to superconductivity. Moreover, compensation effects from the itinerant 5d electrons present a closer analogy to Kondo lattices, indicating a stronger interplay between charge transfer, bandwidth renormalization, compensation, and magnetic exchange. We also obtain the microscopic Hamiltonian using the Wannier downfolding technique, which will provide the starting point for further many-body theoretical studies.