"Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt"

Feng Ke: Chenxu Wang, Chunjing Jia, Nathan R. Wolf, Jiejuan Yan, Shanyuan Niu, Thomas P. Devereaux, Hemamala I. Karunadasa, Wendy L. Mao & Yu Lin; Nature Communications, 01/19/21.

Additional Authors: Chenxu Wang, Chunjing Jia, Nathan R. Wolf, Jiejuan Yan, Shanyuan Niu, Thomas P. Devereaux, Hemamala I. Karunadasa, Wendy L. Mao & Yu Lin

Abstract:

Functional CsPbI3 perovskite phases are not stable at ambient conditions and spontaneously convert to a non-perovskite δ phase, limiting their applications as solar cell materials. We demonstrate the preservation of a black CsPbI3 perovskite structure to room temperature by subjecting the δ phase to pressures of 0.1 – 0.6 GPa followed by heating and rapid cooling. Synchrotron X-ray diffraction and Raman spectroscopy indicate that this perovskite phase is consistent with orthorhombic γ-CsPbI3. Once formed, γ-CsPbI3 could be then retained after releasing pressure to ambient conditions and shows substantial stability at 35% relative humidity. First-principles density functional theory calculations indicate that compression directs the out-of-phase and in-phase tilt between the [PbI6]4− octahedra which in turn tune the energy difference between δ- and γ-CsPbI3, leading to the preservation of γ-CsPbI3. Here, we present a high-pressure strategy for manipulating the (meta)stability of halide perovskites for the synthesis of desirable phases with enhanced materials functionality.