"Intrinsic Topological Insulator Bi2Te3 Thin Films on Si and Their Thickness Limit"

Yao-Yi Li: Guang Wang, Xie-Gang Zhu, Min-Hao Liu, Cun Ye, Xi Chen, Ya-Yu Wang, Ke He, Li-Li Wang, Xu-Cun Ma, Hai-Jun Zhang, Xi Dai, Zhong Fang, Xin-Cheng Xie, Ying Liu, Xiao-Liang Qi, Jin-Feng Jia, Shou-Cheng Zhang, Qi-Kun Xue; Advanced Materials, 09/22/10.

Additional Authors: Guang Wang, Xie-Gang Zhu, Min-Hao Liu, Cun Ye, Xi Chen, Ya-Yu Wang, Ke He, Li-Li Wang, Xu-Cun Ma, Hai-Jun Zhang, Xi Dai, Zhong Fang, Xin-Cheng Xie, Ying Liu, Xiao-Liang Qi, Jin-Feng Jia, Shou-Cheng Zhang, Qi-Kun Xue

Abstract:

High-quality Bi2Te3 films can be grown on Si by the state-of-art molecular beam epitaxy technique. In situ ARPES measurement reveals that the as-grown films are intrinsic topological insulators and the single-Dirac-cone surface state develops at a thickness of two quintuple layers. The work opens a new avenue for engineering of topological materials based on well-developed Si technology.