"Dielectric collapse at the LaAlO3/SrTiO3 (001) heterointerface under applied electric field"

M. Minohara: Y. Hikita, C. Bell, H. Inoue, M. Hosoda, H. K. Sato, H. Kumigashira, M. Oshima, E. Ikenaga & H. Y. Hwang; Sci Rep, 08/25/17.

Additional Authors: Y. Hikita, C. Bell, H. Inoue, M. Hosoda, H. K. Sato, H. Kumigashira, M. Oshima, E. Ikenaga & H. Y. Hwang

Abstract:

The fascinating interfacial transport properties at the LaAlO3/SrTiO3 heterointerface have led to intense investigations of this oxide system. Exploiting the large dielectric constant of SrTiO3 at low temperatures, tunability in the interfacial conductivity over a wide range has been demonstrated using a back-gate device geometry. In order to understand the effect of back-gating, it is crucial to assess the interface band structure and its evolution with external bias. In this study, we report measurements of the gate-bias dependent interface band alignment, especially the confining potential profile, at the conducting LaAlO3/SrTiO3 (001) heterointerface using soft and hard x-ray photoemission spectroscopy in conjunction with detailed model simulations. Depth-profiling analysis incorporating the electric field dependent dielectric constant in SrTiO3 reveals that a significant potential drop on the SrTiO3 side of the interface occurs within ~2 nm of the interface under negative gate-bias. These results demonstrate gate control of the collapse of the dielectric permittivity at the interface, and explain the dramatic loss of electron mobility with back-gate depletion.