"Designing hierarchical nanoporous membranes for highly efficient gas adsorption and storage"

Haiyan Mao: Jing Tan, Jun Chen, Jiayu Wan, Kaipeng Hou, Yucan Peng, David M. Halat, Liangang Xiao, Rufan Zhang, Xudong Lv, Ankun Yang, Yi Cui and Jeffrey A. Reimer; Science Advances, 10/07/20.

Additional Authors: Jing Tan, Jun Chen, Jiayu Wan, Kaipeng Hou, Yucan Peng, David M. Halat, Liangang Xiao, Rufan Zhang, Xudong Lv, Ankun Yang, Yi Cui and Jeffrey A. Reimer

Abstract:

Nanoporous membranes with two-dimensional materials such as graphene oxide have attracted attention in volatile organic compounds (VOCs) and Hadsorption because of their unique molecular sieving properties and operational simplicity. However, agglomeration of graphene sheets and low efficiency remain challenging. Therefore, we designed hierarchical nanoporous membranes (HNMs), a class of nanocomposites combined with a carbon sphere and graphene oxide. Hierarchical carbon spheres, prepared following Murray’s law using chemical activation incorporating microwave heating, act as spacers and adsorbents. Hierarchical carbon spheres preclude the agglomeration of graphene oxide, while graphene oxide sheets physically disperse, ensuring structural stability. The obtained HNMs contain micropores that are dominated by a combination of ultramicropores and mesopores, resulting in high VOCs/H2 adsorption capacity, up to 235 and 352 mg/g at 200 ppmv and 3.3 weight % (77 K and 1.2 bar), respectively. Our work substantially expands the potential for HNMs applications in the environmental and energy fields.