"A Quantitative Correlation between the Mobility and Crystallinity of Photo-Cross-Linkable P3HT"

Claire H. Woo: Claudia Piliego, Thomas W. Holcombe, Michael F. Toney, and Jean M. J. Fréchet; Macromolecules, 03/20/12.

Additional Authors: Claudia Piliego, Thomas W. Holcombe, Michael F. Toney, and Jean M. J. Fréchet


The performance of polymer field effect transistors (FETs) can vary by orders of magnitude by applying different processing conditions. Although it is generally believed that a higher degree of crystallinity results in a higher mobility, the correlation is not straightforward. In addition, the effect of cross-linking on polymer thin film microstructural order is relatively unknown. This study investigates the effect of thermal annealing and UV-initiated photo-cross-linking on the FET performance and microstructural order of a photo-cross-linkable P3HT derivative. Our results demonstrate that while cross-linking did not disrupt the overall crystallinity of the polymer thin film, the photo-cross-linking process likely induced doping in the semiconductor layer, leading to the absence of saturation behavior in the FET. Annealing after cross-linking slightly improved the FET performance but only minimally affected the microstructural order of the polymer film since the 3D morphology had been “locked in” during the first cross-linking step. Importantly, annealing and cross-linking simultaneously was a successful method to preserve polymer crystallinity while also achieving effective cross-linking. Using newly developed quantitative X-ray analysis techniques, our study established a quantitative correlation between FET charge mobility and thin film crystallinity.