"Atomic-scale imaging of ultrafast materials dynamics"

David J. Flannigan: Aaron M. Lindenberg; MRS Bulletin, 07/10/18.

Additional Authors: Aaron M. Lindenberg

Abstract:

The advent of short-pulse electron and x-ray sources has enabled pump-probe approaches for elucidating ultrafast materials dynamics. From such studies, a comprehensive picture of the time-dependent evolution of the initial steps of energy deposition, propagation, relaxation, and conversion in a wide range of materials can be generated. In this article, we provide an overview of the capabilities of femtosecond electron and x-ray scattering for resolving structural dynamics of materials. With such approaches, time resolutions are ultimately limited by the durations of the electron and x-ray pulses, and dynamics can be studied at length scales spanning atomic to mesoscale dimensions. The articles in this issue represent a cross section of the vigorous activity occurring in the study of light-induced ultrafast materials dynamics as it relates to charge carriers, surfaces and interfaces, lattice-coupling mechanisms, coherent structural motions, and next-generation instrument development. The approaches highlighted here are leading to new physical insights, new possibilities for engineering the properties of matter, and ultimately, a new understanding of materials functionality on ultrasmall and ultrashort spatiotemporal scales.