"Angle-resolved photoemission studies of quantum materials"

Jonathan A. Sobota: Yu He and Zhi-Xun Shen; Reviews of Modern Physics, 05/26/21.

Additional Authors: Yu He and Zhi-Xun Shen


The physics of quantum materials is dictated by many-body interactions and mathematical concepts such as symmetry and topology that have transformed our understanding of matter. Angle-resolved photoemission spectroscopy (ARPES), which directly probes the electronic structure in momentum space, has played a central role in the discovery, characterization, and understanding of quantum materials ranging from strongly correlated states of matter to those exhibiting nontrivial topology. Over the past two decades, ARPES as a technique has matured dramatically with ever-improving resolution and continued expansion into the space, time, and spin domains. Simultaneously, the capability to synthesize new materials and apply nonthermal tuning parameters in situ has unlocked new dimensions in the study of all quantum materials. These developments are reviewed, and the scientific contributions they have enabled in contemporary quantum materials research are surveyed.